questions
1

Shoulder Imaging

Topic updated on 11/17/15 5:08pm
Radiographs
  • Shoulder trauma series includes at least:
    • “true” anteroposterior view
    • axillary lateral view
Complete Trauma Series
 View
Focus
Images
Shoulder AP
Glenohumeral joint space, DJD
True shoulder AP Glenohumeral joint space, DJD, and proximal migration of humerus
AP in IR Hill Sachs lesion
AP in ER Hill Sachs lesion
Axillary Anterior and posterior dislocation. 

Velpeau view modification if unable to abduct the arm
Scapular Y Lateral Allows classification of acromion 
Additional Views
Supraspinatous Outlet Allows classification of acromion (Type I-flat, Type II-curved, Type III-hooked). Hooked acromion is associated with impingement and rotator cuff pathology.
Zanca Help visualize the AC joint. Shows AC joint disease and distal clavicle osteolysis.
Stryker notch Hill-Sachs lesion
West Point Axillary Anteroinferior glenoid, bony bankart, proximal humerus fx
Garth Anteroinferior glenoid, bony bankart  
Hobbs Anterior and posterior sternoclavicular dislocation
Serendipity Anterior and posterior sternoclavicular dislocation

 

Computed Tomography
  • Overview
    • provides better detail of cortical and trabecular bone structures than MRI at cost of higher radiation exposure
    • there for optimal for visualization of bony defects
    • magnification artifacts that are associated with radiographs do not occur with CT
  • Axial Shoulder Images
    • useful to visulaize
      • Reverse Hill Sachs 
  • Coronal Shoulder Images
    • useful to visualize
      • fractures
  • Sagittal Shoulder Images
    • useful to visualize
      • anterior-inferior glenoid insufficiency  
  • 3D Reconstructions
    • useful to visualize
      • glenoid version for total shoulder arthroplasty 
Magnetic Resonance Imaging
  • Overview
    • MRI is best for evaluating soft tissue structures and evaluating bone contusions or trabelcular microfractures
    • the stronger the magnet, the higher the intrinsic signal-to-noise ratio (e.g. a 3 Tesla MRI machine has 9x the proton energy of a 1.5 Tesla MRI machine) 
  • T1-weighted sequence
    • uses a short repetition time (TR) and short echo time(TE) 
      • bright= fat
      • dark= fluid, bone, ligament, bone marrow, and fibrocartilage
    • often combined with MR arthrograms
    • useful to visualize
      • Hill Sachs Lesion
  • T2-weighted sequence
    • uses a long TR and long TE
      • bright= fluid (inflammation) and bone marrow
      • dark= bone, ligament, muscle, and fibrocartilage
    • useful to visualize
      • rotator cuff pathology
        • full thickness tear 
  • Short tau inversion recovery (STIR)  
    • Fat saturation (e.g. suppression) technique
      • technique that reduces signal from fat and increases signal from fluid and edema
      • helps to determe edema versus fatty infiltration in the rotator cuff muscles
    • useful to visualize
      • rotator cuff pathology
  • ABER (abduction external rotation) position
    • sequence beyond the conventional 3 sequences (coronal, sagittal, and axial) 
      • patient places affected hand behind their head instead of a true 90-90 degree abduction-external rotation position
      • position tensions the anteroinferior glenohumeral ligament and labrum and relaxes the capsule
    • useful to visualize
      • Bankart lesions
      • partial- and full-thickness tears of the rotator cuff tendons
      • internal impingement 
  • MR arthrogram
    • commonly used to augment MRI to diagnose soft-tissue problems such as SLAP tears
      • dilute gadolinium-containing solution is percutaneously injected into the joint.
    • optimal for
      • labral and ligament pathology
        • Bankart lesion 
        • Superior labrum anterior-posterior tear (SLAP) 
        • Glenoid labral articular disruption (GLAD) 
        • Anterior labral periosteal sleeve avulsion (ALPSA)  
        • Humeral avulsion of the glenohumeral ligament (HAGL)  

 

Please Rate Educational Value!
4.0
Average 4.0 of 18 Ratings

Qbank (1 Questions)

TAG
(OBQ11.131) The proton energy produced by a 1.5 Tesla magnetic resonance imaging (MRI) machine most closely approximates what percentage of a 3.0 Tesla machine? Topic Review Topic

1. 11%
2. 1%
3. 66%
4. 33%
5. 99%

PREFERRED RESPONSE ▶




Evidence



Topic Comments